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Université Paul Sabatier, 31062 Toulouse, France

Received 29 September 2003
Published 21 May 2004
Online at stacks.iop.org/JPhysCM/16/S2223
DOI: 10.1088/0953-8984/16/22/023

Abstract
Lattice density-functional theory is applied to small clusters described by the
Hubbard model in order to study the effect of the correlation on these nano-
objects. Results for the ground-state energy and charge excitation gap of small
clusters are presented and discussed as a function of the number of sites Na ,
Coulomb repulsion U/t , and band filling n.

1. Introduction

Clusters are currently studied in two different contexts in solid-state physics. On the one hand,
they are used as models for calculating properties of infinite systems which are local in nature
or which can be approximated by a discrete sampling in k space [1]. In this framework the
finite size of the cluster is a limitation of which the consequences must be minimized, for
example, by performing finite-size scaling analysis. On the other hand, in recent years it has
become possible to produce isolated clusters containing a small number of atoms as well as
cluster-based nanostructures on surfaces and to study their properties experimentally in various
ways [2]. For these atomic clusters the characteristic physical behaviours resulting from the
limited dimensions of the sample and from the large surface-to-volume ratio are the central
issue.

Electron correlations in finite systems and the associated many-body phenomena which
distinguish small particles from atoms and solids are a subject of main concern in current
cluster research. In this paper, several ground-state properties of one-dimensional (1D) clusters
are investigated by using a recently developed lattice density-functional theory (LDFT) of
strongly correlated fermions [3–5]. The systems are described in the framework of the Hubbard
Hamiltonian [6], which, together with related models, has been successfully applied in past
years to the study of the low-energy electronic properties of various nanostructures and low-
dimensional materials (for example, clusters [7], fullerene molecules [8], polymeric chains [9],
two-dimensional (2D) lattices [10], etc).

0953-8984/04/222223+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK S2223

http://stacks.iop.org/JPhysCM/16/S2223
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The remainder of the paper is organized as follows. In section 2, the main steps of
the LDFT formulation are briefly recalled. Explicit approximations to the interaction-energy
functional W of the Hubbard model are presented in section 3. Results for the ground-state
energy and charge excitation gap of finite rings and cagelike 12-atom clusters are discussed in
section 4. Finally, some perspectives of future research directions are pointed out.

2. Density-functional theory of lattice fermion models

In order to be explicit we focus on the Hubbard model [6] which is expected to capture the
main physics of lattice fermions in a narrow energy band. The Hamiltonian

H =
∑
〈i, j〉σ

ti j ĉ
†
iσ ĉ jσ + U

∑
i

n̂i↓n̂i↑, (1)

includes nearest neighbour (NN) hoppings ti j , and on-site interactions given by U (n̂iσ =
ĉ†

iσ ĉiσ ). The hopping integrals ti j are defined by the lattice structure and by the range of the
single-particle hybridizations (typically, ti j = −t < 0 for NN i j ). They specify the system
under study and thus play the role given in conventional DFT to the external potential Vext(�r).
Consequently, the basic variable in LDFT is the single-particle density matrix γi j. The situation
is similar to the density-matrix functional theory proposed by Gilbert for the study of nonlocal
pseudopotentials [11], since the hoppings are nonlocal in the sites. A formulation of DFT on
a lattice in terms of the diagonal γii alone is possible only if one restricts oneself to models
with constant ti j for i �= j [12].

The ground-state energy Egs and density matrix γ
gs
i j are determined by minimizing the

energy functional

E[γ ] = EK[γ ] + W [γ ] (2)

with respect to γi j . E[γ ] is defined for all density matrices that derive from a physical state,
i.e., that can be written as

γi j =
∑

σ

γi jσ =
∑

σ

〈�|ĉ†
iσ ĉ jσ |�〉, (3)

where |�〉 is an N-particle state. Such γi j are said to be pure-state N-representable. An
extension of the definition domain of E to ensemble-representable density matrices �i j is
straightforward following the work by Valone [13]. The first term in equation (2) is the kinetic
energy associated with the electronic motion in the lattice. It is given by

EK[γ ] =
∑

i j

ti jγi j, (4)

thus including all single-particle contributions. The second term is the interaction-energy
functional given by

W [γ ] = min
�→γ

[
U

∑
i

〈�[γ ]|n̂i↑n̂i↓|�[γ ]〉
]
, (5)

where the minimization runs over all N-particle states |�[γ ]〉 that satisfy

〈�[γ ]|
∑

σ

ĉ†
iσ ĉ jσ |�[γ ]〉 = γi j (6)

for all i and j [14]. W [γ ] represents the minimum value of the interaction energy compatible
with a given density matrix γi j . It is a universal functional of γi j in the sense that it is
independent of ti j , i.e., of the system under study. Nevertheless, W depends on the number of
electrons Ne, on the structure of the many-body Hilbert space, as given by Ne and the number of
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orbitals or sites Na , and on the form of the interaction Hamiltonian. The LDFT formalism can
be readily extended to arbitrary interactions HI = (1/2)

∑
Vi jkl ĉ

†
iσ ĉ†

kσ ′ ĉlσ ′ ĉ jσ , by replacing∑
i n̂i↑n̂i↓ by HI in W [γ ]. However, notice that such a general functional depends crucially

on the considered model interaction as given by the form of Vi jkl .
E[γ ] is minimized by expressing

γi j =
∑

σ

γi jσ =
∑
kσ

uikσ ηkσ u∗
jkσ (7)

in terms of the eigenvalues ηkσ (occupation numbers) and eigenvectors uikσ (natural orbitals)
of γi jσ . Lagrange multipliers µ and λkσ (εkσ = λkσ /ηkσ ) are introduced in order to impose
the constraints

∑
kσ ηkσ = Ne and

∑
i |uikσ |2 = 1. Deriving with respect to u∗

jkσ and ηkσ

(0 � ηkσ � 1), one obtains the eigenvalue equations

ηkσ

∑
i

(
ti j +

∂W

∂γi j

)
uikσ = εkσ u jkσ , (8)

with the subsidiary conditions εkσ < µ if ηkσ = 1, εkσ = µ if 0 < ηkσ < 1, and εkσ > µ

if ηkσ = 0 [3, 11]. Self-consistency is implied by the dependence of ∂W/∂γi j on ηkσ and
uikσ . This formulation is analogous to density-matrix functional theory in the continuum [11].
However, it differs from KS-like approaches which assume non-interacting v-representability
and where only integer occupations are allowed [12, 15–17]. In the present case, the fractional
occupations of natural orbitals play a central role. One may in fact show that in general
0 < ηkσ < 1 for all kσ . Exceptions are found only in very special situations like the
uncorrelated limit (U = 0) or the fully polarized ferromagnetic state in the Hubbard model
(Sz = min{Ne, 2Na − Ne}/2). This can be understood from perturbation-theory arguments,
since none of the ηkσ is a good quantum number for U �= 0, and is explicitly verified by exact
solutions of the Hubbard Hamiltonian on finite systems or the 1D infinite chain [18]. The
non-integer occupation of all natural orbitals implies that the eigenvalues εkσ in equation (8)
must be degenerate. Consequently, the ground-state density matrix satisfies

ti j +
∂W

∂γi j
= δi jµ. (9)

Notice the importance of the dependence of W on the off-diagonal density-matrix elements
γi j which measure the degree of electron delocalization. Approximations of W in terms of
the diagonal γii alone are not applicable in this framework (ti j �= 0 for NN i j ). Equation (9)
provides a formal scheme to solve for the ground-stateγ

gs
i j according to the variational principle.

For practical applications one needs of course explicit approximations to W [γ ] providing an
accurate description of the electronic properties of the model in different interaction regimes,
band-fillings, and lattice structures. This is discussed in the following section.

3. Interaction-energy functionals for the Hubbard model

The general functional W [γ ], valid for all lattice structures and for all types of hybridization,
can be simplified at the expense of universality if the hopping integrals are short ranged. For
example, if only NN hoppings are considered, the kinetic energy EK is independent of the
density-matrix elements between sites that are not NNs. Therefore, the constrained search in
equation (5) may be restricted to the |�[γ ]〉 that satisfy equation (6) only for i = j and for NN
i j . This reduces significantly the number of variables in W [γ ] and renders the determination
and interpretation of the functional dependence far simpler. In particular for periodic lattices,
symmetry considerations require that all NN density-matrix elements of the ground state have
the same value, i.e., γi j = γ12 for all NN pairs i j . Therefore, the interaction-energy functional
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W can be regarded as a simple function of the NN density-matrix element γ12. Notice, however,
that in this way W loses its universal character, since the NN map and the resulting dependence
of W on γ12 are in principle different for different kinds of lattice [3].

In order to derive simple approximations to W (γ12), one may take advantage of some
general properties, in particular of the scaling behaviour of W (γ12) within its domain of
representability [3, 4]. Exact numerical studies [3] have in fact shown that W (γ12) depends
weakly on Ne, Na and lattice structure if it is measured in units of the Hartree–Fock energy
EHF and if γ12 is scaled within the relevant domain of representability [γ ∞

12 , γ 0
12]. Here γ ∞

12
represents the largest NN bond order that can be obtained under the constraint of vanishing
Coulomb energy, andγ 0

12 is the largest representable value ofγ12 corresponding to the maximum
degree of electron delocalization. In other words, the relative change in W associated with a
change in the degree of delocalization

g12 = (γ12 − γ ∞
12 )/(γ 0

12 − γ ∞
12 ) (10)

can be approximated as nearly independent of the system under study. The functional
dependence of W on g12 can then be extracted from a simple reference system. Using the exact
analytical result for the Hubbard dimer, one obtains the dimer or second-order approximation
W (2) which reads [4]

W (2)(γ12) = EHF

(
1 −

√
1 − g2

12

)
. (11)

Notice that EHF, γ ∞
12 and γ 0

12 are system specific. In practice, γ ∞
12 may be approximated by

the ferromagnetic fully polarized γ FM
12 which is derived, like EHF and γ 0

12, from the solution of
the single-particle spectrum. Equation (11) has been previously applied to determine several
ground-state properties of 1D, 2D, and 3D systems in the thermodynamical limit [4]. In
particular, for the infinite 1D chain, it has been shown that the LDFT results for the ground-
state energy Egs are remarkably close to the exact Bethe ansatz solution for all band fillings
n. For n � 0.8 the LDFT results are nearly indistinguishable from the exact ones. Even the
largest discrepancies, found for n = 1 and intermediate U/t , are acceptably small (i.e., of
the order of 10%). However, for n = 1 and U/t � t , equation (11) yields Egs � −α2t2/U
with α2 � 3.24, while the exact result is αex = 4 ln 2 � 2.77. In order to overcome this
shortcoming in the case of strong correlations, a more flexible functional has been introduced,
which includes a fourth-order term in g12. In this case the interaction energy takes the form

W (4) = EHF

(
1 −

√
1 − κg2

12 + (κ − 1)g4
12

)
, (12)

where κ = αex/α2 > 0 is the ratio between the small-γ12 expansion coefficients of W ex and
W (2). The value of κ depends somewhat on the lattice structure or system dimensions. At half
band filling it can be determined by applying perturbation theory to the Heisenberg limit of the
Hubbard model [19]. For instance, for the 1D chain one obtains κ1D = 8/(π2 ln 2) = 1.169.
Notice that κ1D is not very far from the dimer value κ = 1, for which equation (12) reduces to
equation (11). Therefore, the fourth-order term appears as a relatively small correction to the
second-order approximation. Equation (12) provides a systematic improvement at half band
filling for all values of the interaction strength U/t . In the following section equations (11)
and (12) are applied in the framework of LDFT to determine several electronic properties of
the Hubbard model on finite clusters.

4. Results and discussion

In figure 1 results are given for the ground-state energy Egs of 1D Hubbard rings as a function
of number of sites Na for representative values of the Coulomb interaction U/t and band
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Figure 1. Ground-state energy of Hubbard rings as a
function of the number of sites Na for half band filling
n = Ne/Na = 1 and different values of the Coulomb
repulsion U/t . The crosses refer to exact diagonalization
results obtained using the Lanczos method. The lines are
a guide to the eye connecting the results of lattice density-
functional theory (LDFT).

Figure 2. Ground-state energy of a Hubbard ring with
Na = 12 sites as a function of the Coulomb repulsion
U/t for different band fillings n = Ne/Na . The
crosses refer to exact diagonalization results obtained
using the Lanczos method and the curves to lattice density
functional theory (LDFT).

filling n = Ne/Na = 1. The LDFT calculations are compared with exact numerical results
obtained by using the Lanczos method [20]. One observes that LDFT yields very good results
for all ring sizes and interaction regimes. For weak and strong interactions (U/t � 1 and
U/t � 16) the LDFT values are extremely close to the exact ones, while for intermediate
interaction strengths (e.g., U/t = 4) some minor discrepancies are appreciable. In all cases
the trends as a function of cluster size Na are very well reproduced (see figure 1). In order
to investigate the changes in the ground-state properties for different band fillings, we present
in figure 2 results for Egs as a function of U/t for a periodic ring with Na = 12 sites and
n = 1/4, 1/2, 3/4, and 1. On one side, Egs increases monotonically with U/t with a slope
∂ Egs/∂U = ∑

i〈ni↑ni↓〉 > 0 that is smaller for smaller density. On the other side, for
small U/t , Egs decreases with increasing n as the single-particle band is filled (n � 1). As a
result, a non-monotonic band-filling dependence is observed in the limit of strong correlations.
This behaviour is very well reproduced by LDFT for all band fillings and interaction regimes
(see figure 2). The very good performance holds not only for Egs but also for the separate
kinetic and Coulomb contributions, which implies that electron localization and intra-atomic
correlations are correctly described for all U/t . Therefore, the accuracy obtained for the
ground-state energy is not the consequence of a compensation of errors. It is also interesting
to observe that in the present LDFT calculations no artificial symmetry breaking is required
in order to describe correlation-induced localization correctly, as it is often the case in other
approaches, for example, in a mean-field spin density-wave state in the unrestricted Hartree–
Fock approximation [8] or in the saddle-point slave boson method [21]. Moreover, the LDFT
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Figure 3. Charge excitation gap 
Ec of Hubbard rings
as a function of the number of sites Na for different values
of the Coulomb repulsion U/t . The crosses refer to
exact diagonalization results obtained using the Lanczos
method. The open circles connected by dashed lines are
the results of lattice density-functional theory (LDFT).

Figure 4. Charge excitation gap 
Ec of a Hubbard ring
with Na = 12 sites as a function of U/t . The solid
curves refer to LDFT and the symbols to exact numerical
diagonalizations [20].

calculations remain simple and numerically not demanding, since the minimization of Egs

involves analytical expressions for EK and W (see equations (4), (11), and (12)). One concludes
that LDFT, combined with equations (11) and (12) as approximations to the interaction-energy
functional, provides an accurate description of ground-state electron correlations in finite 1D
rings.

The charge excitation gap or bandgap defined by


Ec = Egs(Ne + 1) + Egs(Ne − 1) − 2Egs(Ne) (13)

is a property of considerable interest in strongly correlated systems. In the thermodynamic
limit it can be related to the discontinuity in the derivative of the kinetic and correlation energies
per site with respect to the electronic density n. Thus, the determination of 
Ec constitutes
a much more serious challenge than the calculation of ground state properties, particularly in
the framework of a density-functional formalism. In figure 3 results are shown for 
Ec of
Hubbard rings as a function of the number of sites Na for representative values of U/t . For
small U/t one observes oscillations of 
Ec as a function of Na which are related to the structure
of the single-particle spectra of the rings. These are progressively attenuated as U/t increases
and finally disappear in the strongly interacting limit. Consequently, the convergence to the
infinite chain limit is faster for large U/t . Concerning the comparison between LDFT and
exact results, one observes, as in the case of Egs, that our method performs at its best for weak
and strong interactions. However, even in the crossover regime, e.g., U/t = 4, the quantitative
discrepancies are fairly small and the overall trends are well reproduced. The dependence of
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Ec on U/t is shown in figure 4 for the case of a 12-site ring. 
Ec increases with increasing
U/t (
Ec = 0 for U/t = 0) and approaches the limit 
Ec → (U − wb) for U/t → ∞,
where wb is the width of the single-particle band of the 1D ring. Comparison between LDFT
and exact results shows a good overall agreement. It should however be noted that the gap
is somewhat underestimated for U/t 
 1. Nevertheless, the accuracy of LDFT improves
rapidly with increasing U/t , as electron localization starts to set in. The error in 
Ec tends
to zero for large U/t , and therefore the development of a Mott-insulator-like state is correctly
described.

Calculations have also been performed for cagelike or fullerene Hubbard clusters in order
to explore the effects of lattice frustrations on the ground-state properties. In the case of the
icosahedral C12 structure, the LDFT results have been compared with exact and unrestricted
Hartree–Fock (UHF) calculations. LDFT gives in general a much better description of ground-
state energy Egs as a function of n and U/t than UHF. For example, in the intermediate
and strongly interacting regimes UHF overestimates Egs significantly while the differences
between the exact and LDFT results are very small. This reflects limitations of the broken
symmetry UHF solutions, even in the most general non-collinear case [8]. Let us recall that
no symmetry breakings are required in LDFT in order to correctly reproduce these correlation
effects. Moreover, the charge excitation gaps obtained in this framework are in good agreement
with exact diagonalizations. Therefore, one expects that LDFT should be an efficient tool
for investigating the properties of larger fullerenes such as C20, C60, and C70 which are
inaccessible to exact diagonalization methods. In this way the available UHF studies [8]
could be significantly improved. Research in this direction is currently in progress.

In summary, a novel lattice density functional approach to electron correlations in lattice
models has been applied to the determination of several electronic properties of finite Hubbard
clusters. Results for the ground-state energy and charge excitation gap of 1D rings and
the icosahedral-cage C12 cluster demonstrate the ability of lattice density-functional theory
to describe quantitatively the subtle competition between kinetic charge fluctuations and
correlation induced localization. Besides the interest of these specific systems, the accuracy of
the results and the simplicity of the calculations encourage further applications to the problem
of electron correlations in nanostructures.
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